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Statistical thermodynamics of superfluid helium confined to a 
cuboidal enclosure below 0.5 KT 

C S Zasada and R K Pathria 
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 

Received 12 October 1978 

Abstract. We have calculated the low-temperature specific heat and normal fluid density of 
superfluid helium confined to a completely general cuboidal geometry (L1 x Lz x L3).  The 
limiting cases of a film and of a capillary geometry can be obtained readily and are found to 
be in agreement with the ones recently examined by Pajkowski and Pathria. New results on 
the cubic geometry are presented here for the first time. A systematic application of the 
Poisson summation formula reveals the manner in which the magnitude of the finite-size 
corrections, in the asymptotic limit (L/A >> 1). is directly linked with the dimensionality of 
the system. 

1. Introduction 

Recent interest in finite-size effects has prompted numerous experimental and 
theoretical investigations in various physical systems, notably in superfluid helium. 
Experimental studies on this system in thin films, narrow channels and porous matrices 
(Rudnick etal 1967,1968, Fraser and Rudnick 1968, Kagiwada etal 1969, Henkel etal 
1969, Pobell et a1 1972, Scott et a1 1972, Gregory and Lim 1974) have indicated that 
the various low-temperature properties deviate significantly from their values in the 
bulk situation. In an attempt to provide a theoretical understanding of these deviations, 
Padmore (1972) suggested that the finite-size effects in superfluid helium may be 
analysed within the framework of Landau’s quasiparticle picture, provided that the 
smallest dimension of the enclosure is much larger than the healing length, which is of 
the order of 1-2 A. For TCO.5 K, the contribution of rotons to the various ther- 
modynamic properties of the system is negligible, so one may consider the phonon 
contribution alone. In this spirit, Padmore (1972) and subsequently others (Haug 1973, 
Pajkowski and Pathria 1978, 1979) have examined the thermodynamics of a phonon 
gas confined to the geometry of films and channels and subjected to various boundary 
conditions. In this paper we generalise that work to an arbitrary cuboidal geometry 
(L1 x L2 x L 3 )  under periodic boundary conditions and show how the results obtained 
by the previous authors are recovered when one or two dimensions of the enclosure 
become infinite. The case of a cubic geometry, which is completely finite, is also 
discussed at some length. Our analysis automatically reveals how, in the asymptotic 
limit (L/A >> l ) ,  the magnitude of the finite-size corrections is affected by the dimen- 
sionality of the system; here, A ( =  )rc/kT) is the mean thermal wavelength of the 
phonons. 
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In this study we concentrate on the normal fluid density pn, given by 

h2 
p , (T)  = - kl eBfk (epfk- I)-’ 

k T V  k 

and the specific heat CV, given by 

Here 

2i? 
Li 

c k  = hc(k: + k: + k 3 )  2 1 / 2  , k, = -n, ( n L  =o,  il, * 2 , .  . .). 

2. The cuboidal geometry 

The major task in the study of finite systems lies in evaluating the discrete sums-over- 
states such as the ones appearing in equations ( 1 )  and ( 2 ) .  The method highly suited for 
this purpose is the application of the Poisson summation formula (PSF); see, for 
instance, Schwartz (1966).  

In ( 1 )  the summations over nl and n 2  are on a different footing from the one over n3;  
we therefore apply the two-dimensional PSF to the sums over n l  and n2, and 
subsequently apply the one-dimensional PSF to the sum over n3. The first step results in 

pn=-+- h 167r3h( - A )  f f ( s )~  
VCA c L3 q 1 . 2 - - m n 3 = l  L3 

X f j Iom e x p [ - 2 r A j ( y 2 + n : / L : ) ” 2 ~ o ( 2 7 r q ’ y ) y  dy, (4) 

where J&) is the Bessel function of the first kind and q’ = (q: +q: ) l” .  Performing the 
integration over y and applying the PSF to the sum over n3 then leads to 

j = 1  

2 1 / 2  where q”=  (q: +;q: +43! . We note that the term with q = 0 gives the standard bulk 
result p:( = 27r h/45cA ), while the remaining terms represent finite-size corrections. 
For studying special cases it will be convenient to rewrite this result in terms of 
hyperbolic functions which appear on carrying out the summation over j ,  namely 

w h  h m  
p n = p n  +-+- 1‘ =--CO 

V ~ A  2 i ? 2 C ~ 4  q1 .2 .3  

-r3($,) c o t h ( T )  cosech2(F) ]  
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- ( L343 T) { -(  IT ;) A coth( F) + *( 4)4 cosech2( F) 
2 4  2 4  

-~~~($)*[cosech~(?) + 2  coth2(?) cosech2(?)])]. 

Note that the primed summation in (6) does not include the term with 4 = 0. 

among different variables. An application of the three-dimensional PSF now gives 
The internal energy U is comparatively easier to handle owing to the symmetry 

where U" = IT' VZtc/30h4. The specific heat then follows after a straightforward 
diff erentiaticn. 

3. Special cases 

Equations (6) and (7) for the general cuboidal geometry form our starting point for a 
detailed examination of the various special cases. In the film geometry we let L1, 
L3 + CO and set L1 = L. The only values of 42 and q3 which contribute in this case are 
4 2  = 43 = 0. We are therefore left with one-dimensional sums alone: +q-) A * cosech2( 7rLq/A ) 

2 L  42 

A coth(rLq/h) cosech2(~Lq/A)] 
- I T 3 k )  4 J 

and 

p u  pu" 1 
+7 v V I T  

In the asymptotic regime 

- A coth(.rrlq/A ) cosech2(rLq/A) 
* (9) 

4 

(L/A >> 1) the foregoing summations are strongly con- 
vergent. One may therefore retain only the leading exponential terms of the series and 
obtain for the normal fluid density 

and for the specific heat per unit volume 

cu =y( 2 r 2 k  1 +60[ 1 -(&)I e-2wL/A], 
15A 

in complete agreement with the corresponding results of Pajkowski and Pathria (1978). 
In the complementary regime (L/A << 1) expansions (8) and (9) as such are not very 

useful, so we re-apply the one-dimensional PSF to them and obtain alternative 
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expansions, namely 

3h 
P n = p ?  ~ T C A  3L j = i  [ 

coth( T A  j/ L) cosech2( n A j /  L) 
i 

Expressions (12) and (13) are strongly convergent for L/A << 1 ,  and, retaining only the 
leading exponential terms here, we obtain 

and 

cu = %{ 5(3) + [ 2 + 2( 7) + (*) +r( 1 r)2] 2rrA (15) 
7 r ~ 2 ~  L 

again in agreement with Pajkowski and Pathria (1978). Although in principle the pairs 
of expressions (lo),  (14) and ( l l ) ,  (15) are supposed to cover the extreme ranges of 
values of the parameter L/A, in practice they have an overlapping range of utility, so 
that, taken together, they constitute a description of pn and c, over the whole range of 
film thickness. It should also be noted that both pairs of equations (8), (12) and (9), (13) 
are in fact valid over the entire range of L/A, though they differ markedly as regards 
convergence. For instance, although (12) and (13) are strongly convergent for L/A << 1, 
we can recover even the bulk result from them by using appropriate approximations for 
the hyperbolic functions. 

For the square-channel geometry we let L3 -, CO and set L1  = L2 = L in equations (6) 
and (7). The only value of q3 contributing in this case is q3 = 0, so we are left with 
two-dimensional sums, namely 

7r A coth(rrLq/A) +q-) A cosech2( d q / A  ) 
2 L  q2 

ff [-(-) q 3  
w h  

P n = P n  +zL  IT CA q 1 , 2 = - a  2 L 

1 coth(rrLq/A) cosech2(dq/A) 
4 

and 

where we have used the Hardy sums 

P ( s )  being the Dirichlet L-series X:=p=o (-1)"(2n + l)-'. 
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In the asymptotic regime (L/A >> 1) these expansions are strongly convergent, so we 
may retain only the largest set of terms in each summation and obtain 

and 

in complete agreement with the corresponding results of Pajkowski and Pathria (1979). 
Again, expansions (16)  and (17) do not provide a useful description in the comple- 

mentary regime (L/A << 1). For this we may transform these expressions by employing 

Owing to the rapid convergence of the modified Bessel functions appearing in these 
expressions, they are highly useful in the regime L/A << 1. Taking only the leading set of 
terms in each sum, and employing the well-known expansion 

1 /2  4 v 2 -  1 (4~'- 1)(4v2-9) 
~ , ( z )  = (E) exp(-z) 1 +- + + . . .I, [ 82 2!(8z) '  

we get 

and 

3AL 

Equations (26)  and (27) are again in agreement with the corresponding ones of 
Pajkowski and Pathria (1979) and, taken together with equations (19) and (20) ,  
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constitute a complete description of pn and c, over the entire range of L/A. It may be 
mentioned here too that, although expressions (23) and (24) are useful in the regime 
L/A << 1, they are valid over the entire range of that parameter, as can be seen by 
integrating over 4 (which corresponds to taking the bulk limit, and indeed leads to the 
usual bulk results). 

We finally consider the case of a cube, for which L1 = L2 = L3 = L. Equation (6) now 
becomes 

00 4 

1’ { %[ cosech4( F q )  P n = P n  m h  +Y+T h cAL 277 CA q1,2.3=-m 

+2 coth2( F q )  cosech2( $I)] 

coth(rLq/A) cosech2(?rLq/A) 
4 

where we have symmetrised the sum involving q3 with respect to all three indices. One 
cautionary remark is in order here: in view of the hydrodynamical basis of defining pn, as 
in equation ( l ) ,  calculations on a completely finite geometry might be questionable if 
one chose boundary conditions which do not permit flow (Dirichlet, for example). Since 
our treatment only deals with periodic boundary conditions, this objection does not 
apply here. 

@U @Um A 77 coth(rLq/A ) cosech2(rLq/A ) 

where (Zasada and Pathria 1976) 

Equation (7) for this case takes the form 

- +7b2-T 2’ , (29) 
V V 277 L 2A L q,,2,3=-m 9 

As before, retaining only leading terms in these summations, we obtain expressions 
appropriate to the asymptotic rCgime (L/A >> 1): 

,on=---{ 277’h 1 + ~ ; ; i ( ~ ) ~ + 1 8 0 [ 1 - 3 ( & ) ]  45 A 
45cA4 

and 

C, =Et[ 15A 1 + 180[ 1 - 3(&)] (32) 

We note that the finite-size correction to c, in the case of a cube, in the asymptotic 
rbgime, has the same functional dependence on L/A as in the case of films and channels; 
see equations (1 l ) ,  (20) and (32). However, the magnitudes of enhancement over the 
bulk value in the three cases are in the ratios 1 : 2 : 3. Although it is intuitively clear that 
the finite-size corrections should be larger in a system with a greater degree of 
finiteness, here we see rather explicitly that this effect, in the asymptotic regime, is 
directly linked with the dimensionality of the system through the multiplicity of the 
leading terms in the relevant sums. We observe that these corrections are given by one-, 
two-, and three-dimensional summations over the same summand (see equation (7)) for 
all geometries, and the leading terms are two-, four- and six-fold degenerate, thus 
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accounting for the ratios of the factors obtained. The corresponding correction to pn, 
however, exhibits somewhat different behaviour for different geometries. This is not 
surprising because a hydrodynamical property, with its inherent anisotropy, such as in 
(l),  is quite likely to possess a sensitivity which changes more characteristically with 
geometry. 

Returning to the cube, we shall now obtain expressions useful in the complementary 
rCgime (L/A << 1). For this it  is sufficient to retain only the leading terms in the original 
relations, equations (1) and (2), for in this rCgime those relations are already strongly 
convergent. We obtain 

and 

Retaining only the largest leading terms, we obtain 

and 

cu = -$[ 1 + 6( F)’ e-2m*/L]. 

The expressions in this rCgime vary rather significantly in their functional form as we go 
from (i) a film to (ii) a channel to (iii) a cube; cf equations (14), (19, equations (26), (27) 
and equations ( 3 9 ,  (36). Since L << A, the finite dimensions practically drop out, and the 
system under study behaves as if it were essentially (i) a two-dimensional or (ii) a 
one-dimensional or (iii) a ‘zero-dimensional’ bulk system. 

Once again the approximations (31) and (32), coupled with the approximations (35) 
and (36), cover almost the entire range of AIL; see figures 1 and 2, where results for 
other geometries are also plotted. 

0 
A I L  

Figure 1. Logarithmic plot of the reduced specific heat c*(=c,/cp) of a phonon gas for 
various goemetries under periodic boundary conditions as a function of h / L .  Cube: full 
curve; square channel’broken curve; film: dotted curve. 
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AIL  

Figure 2. Logarithmic plot of the reduced normal fluid density p * ( = p . / p ? )  of a phonon gas 
for various geometries under periodic boundary conditions as a function of h / L .  Details as 
in figure 1. 

4. Concluding remarks 

Examining figures 1 and 2, we notice all the qualitative features one would expect of the 
quantities c*(=cv/c:) and p* (=p , , /p : )  as functions of AIL. In each case the system 
exhibits a crossover from bulk to finite-size behaviour when h / L  = 0(1), i.e. when the 
mean thermal wavelength of the phonons is of the same order of magnitude as the finite 
dimension of the container. Quite expectedly, the crossover occurs faster for a more 
finite geometry, with deviations from bulk behaviour extending progressively deeper 
into the asymptotic rCgime. 

Although there have been some measurements of the superfluid density ps in liquid 
helium confined to restricted geometries below 0.5 K (Pobell et a1 1972) which agree 
qualitatively with the calculations reported here, in that the superfluid density is 
suppressed below its bulk value (indicating an enhancement of the normal fluid density 
p,,), a meaningful comparison on a quantitative basis is not yet possible. The fourth- 
sound, oscillating U-tube and persistent current experiments of these authors were 
conducted in compressed lampblack or Vycor in which a geometry of non-intersecting 
channels was assumed. However, nitrogen absorption and mercury intrusion methods, 
in conjunction with the above assumption, gave substantially different values for the 
average pore diameter in these matrices; this makes the numerical value of h / L  very 
uncertain. Hopefully, when precise methods for a quantitative determination of the 
interstitial geometry in such structures are available, a detailed comparison with 
theoretical results will be possible. In the meantime, the calculations reported here 
might stimulate further experimental work on the specific heat cv and the superfluid 
density ps of liquid helium confined to restricted geometries in the phonon rCgime 
( T  < 0.5 K). 
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